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We study the thermodynamic Casimir force for films in the three-dimensional Ising universality class with
symmetry-breaking boundary conditions. To this end we simulate the improved Blume-Capel model on the
simple cubic lattice. We study the two cases ++, where all spins at the boundary are fixed to +1 and +−, where
the spins at one boundary are fixed to +1 while those at the other boundary are fixed to −1. An important issue
in analyzing Monte Carlo and experimental data are corrections to scaling. Since we simulate an improved
model, leading corrections to scaling, which are proportional to L0

−�, where L0 is the thickness of the film and
��0.8, can be ignored. This allows us to focus on corrections to scaling that are caused by the boundary
conditions. The analysis of our data shows that these corrections can be accounted for by an effective thickness
L0,ef f =L0+Ls. Studying the correlation length of the films, the energy per area, the magnetization profile, and
the thermodynamic Casimir force at the bulk critical point we find Ls=1.9�1� for our model and the boundary
conditions discussed here. Using this result for Ls we find a nice collapse of the finite-size scaling curves
obtained for the thicknesses L0=8.5, 16.5, and 32.5 for the full range of temperatures that we consider. We
compare our results for the finite-size scaling functions �++ and �+− of the thermodynamic Casimir force with
those obtained in a previous Monte Carlo study, by the de Gennes-Fisher local-functional method, field
theoretic methods, and an experiment with a classical binary liquid mixture.
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I. INTRODUCTION

In the thermodynamic limit, in the neighborhood of a
second-order phase transition the correlation length � that is
the characteristic length of thermal fluctuations diverges fol-
lowing a power law:

� = �0,��t�−��1 + b��t�� + ct + ¯� , �1�

where t= �T−Tc� /Tc is the reduced temperature and �0,� is
the amplitude of the correlation length in the low- �−� and
the high- �+� temperature phases, respectively. Using this
notation, we assume that the high-temperature phase is char-
acterized by disorder and the low-temperature one by order.
The power law �Eq. �1�� is subject to confluent corrections,
such as b��t��, and nonconfluent ones such as ct. Critical
exponents like � and ratios of amplitudes such as �0,+ /�0,−
are universal. This means that they assume exactly the same
value for any system within a given universality class. Also
correction exponents like �=�� and ratios of correction am-
plitudes as b+ /b− are universal. For the three-dimensional
Ising universality, which is considered here and other three-
dimensional universality classes like the XY or the Heisen-
berg universality class, ��0.5. For reviews on critical phe-
nomena and the renormalization group �RG� see, e.g., Refs.
1–4.

In 1978 Fisher and de Gennes5 realized that when thermal
fluctuations are restricted by a container, a force acts on its
walls. Since this effect is analogous to the Casimir effect,
where the restriction of quantum fluctuations induces a force,
it is called “thermodynamic” Casimir effect. Since thermal
fluctuations only extend to large scales in the neighborhood
of continuous phase transitions it is also called “critical” Ca-
simir effect. Recently this force could be detected for various

experimental systems and quantitative predictions could be
obtained from Monte Carlo simulations of spin models.6

Here we study the thermodynamic Casimir force for the
film geometry. From a thermodynamic point of view, the
thermodynamic Casimir force per area is given by

FCasimir = −
� f̃ ex

�L0
, �2�

where L0 is the thickness of the film and f̃ ex= f̃ f ilm−L0 f̃ bulk is

the excess free energy per area of the film, where f̃ f ilm is the

free energy per area of the film and f̃ bulk the free energy
density of the bulk system. The thermodynamic Casimir
force per area follows the finite-size scaling law

FCasimir � kBTL0
−3��t�L0/�0,+�1/�� , �3�

See, e.g., Ref. 7. The finite-size scaling function ��x� de-
pends on the universality class of the bulk phase transition,
the geometry of the finite system, and the surface universal-
ity classes of the boundary conditions that are applied. For
reviews of surface critical phenomena see Refs. 8–10. Simi-
lar to the power law �Eq. �1��, finite-size scaling equations
such as Eq. �3� are subject to corrections to scaling. In the
generic case one expects that leading corrections are �L0

−�

�Ref. 11�, where �=0.832�6� �Ref. 12� for the three-
dimensional Ising universality class. Furthermore one ex-
pects corrections that are caused by the boundaries. We shall
give a more detailed discussion of corrections to scaling be-
low in Sec. IV.

Here we compute finite-size scaling functions � of the
thermodynamic Casimir force for the three-dimensional
Ising universality class and symmetry-breaking boundary
conditions. Experimentally this situation is realized, for ex-
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ample, by a film of a classical binary liquid mixture. Typi-
cally, the surface is more attractive for one of the two com-
ponents of the mixture, breaking the symmetry at the
boundary. In the Ising model this can be described by an
external field that acts on the spins at the surface of the
lattice. Following the classification of surface critical phe-
nomena such surfaces belong to the normal surface univer-
sality class, which is equivalent to the extraordinary surface
universality class.13 In recent experiments on colloidal par-
ticles immersed in a binary mixture of fluids,14 the authors
have demonstrated that the adsorption strength can be varied
continuously by a chemical modification of the surfaces. In
particular, the situation of effectively equal adsorption
strengths for the two fluids can be reached. For sufficiently
small ordering interaction at the surface, this corresponds to
the ordinary surface universality class. Hence these experi-
ments open the way to study the crossover between different
surface universality classes. For a recent theoretical discus-
sion of the crossover behaviors of the thermodynamic Ca-
simir force see Ref. 15 and references therein. Here we shall
not study such crossover behaviors and restrict ourselves to
compute finite-size scaling functions for the normal or ex-
traordinary universality class. Note that the breaking of the
effective symmetry between the components of the fluid, or
the breaking of the Z2 symmetry between + and − spins at
the surface in the Ising model, constitutes a relevant pertur-
bation at the ordinary fixed point.8–10 Therefore, even for a
small breaking of the symmetry, for sufficiently large dis-
tances, which means in our context a large thickness of the
film, the physics in the neighborhood of the critical point is
governed by the normal or extraordinary universality class.

Since a film has two surfaces, we can distinguish the two
principal cases: firstly both boundaries attract positive spins,
denoted by ++ in the following, and secondly one boundary
attracts positive spins while the other attracts negative spins,
denoted by +− in the following. Note that by symmetry −−
and −+ boundary conditions are equivalent to ++ and +−
boundary conditions, respectively.

In previous Monte Carlo studies16,17 the spin-1/2 Ising
model has been simulated. Computing finite-size scaling
functions from numerical data obtained for finite thicknesses
L0, corrections to scaling are a major obstacle. The results for
�++ and �+− given by Refs. 16 and 17 depend quite strongly
on the ansatz that is chosen for the corrections. Here we shall
study the improved Blume-Capel model on the simple cubic
lattice. The Blume-Capel model is a generalization of the
Ising model. In addition to �1, as in the Ising model, the
spin might assume the value 0. The parameter D of the
model controls the relative weight of 0 and �1. For a precise
definition see Sec. II below. Improved means that the ampli-
tude of corrections �L0

−� vanishes or in practice is very small
compared with the spin-1/2 Ising model. Studying thin films
this is a quite useful property since the boundary conditions
cause corrections that are �L0

−1 as we shall discuss below.
Fitting numerical data, it is quite difficult to disentangle cor-
rections that have similar exponents. Avoiding this problem
we are able to compute the finite-size scaling functions �++
and �+− with a small and, as we shall argue, reliable error
estimate. Reliable numerical calculations are important since
field theoretic methods do not provide quantitatively accurate

results for the scaling functions �++ and �+− as we shall see
below. Recently the scaling function �++ has been computed
by using the de Gennes-Fisher local-functional �LF�
method.18 We find a rather good agreement with our result.

The outline of the paper is the following. First we define
the model and the observables that we have studied. Then we
discuss finite-size scaling and corrections to finite-size scal-
ing. Next we exploit the relation of the spectrum of the trans-
fer matrix and the thermodynamic Casimir force. Then we
discuss the Monte Carlo algorithms that we have used. We
analyze our data obtained from simulations at the critical
point of the bulk system. This way we obtain accurate results
for the Casimir amplitudes and for Ls that characterizes the
corrections to scaling caused by the boundary conditions.
Next we have simulated in a large range of temperatures
around the bulk critical point. Based on these simulations we
obtain the finite-size scaling functions �++ and �+− of the
thermodynamic Casimir force. In addition we compute the
finite-size scaling functions of the correlation length of the
films. Finally we compare our results with those obtained by
field theoretic methods, the local-functional method, previ-
ous Monte Carlo studies of the Ising model, and an experi-
ment on a classical binary liquid mixture.

II. MODEL

We study the Blume-Capel model on the simple cubic
lattice. It is defined by the reduced Hamiltonian

H = − ��
	xy


sxsy + D�
x

sx
2, �4�

where the spin might assume the values sx� �−1,0 ,1�. x
= �x0 ,x1 ,x2� denotes a site on the simple cubic lattice, where
xi� �1,2 , . . . ,Li� and 	xy
 denotes a pair of nearest neighbors
on the lattice. The inverse temperature is denoted by �
=1 /kBT. The partition function is given by Z=��s�exp�−H�,
where the sum runs over all spin configurations. The param-
eter D controls the density of vacancies sx=0. In the limit
D→−	 vacancies are completely suppressed and hence the
spin-1/2 Ising model is recovered.

In d
1 dimensions the model undergoes a continuous
phase transition for −	�D�Dtri at a �c that depends on D.
For D
Dtri the model undergoes a first-order phase transi-
tion. The authors of Ref. 19 give for the three-dimensional
simple cubic lattice Dtri=2.0313�4�.

Numerically, using Monte Carlo simulations it has been
shown that there is a point �D� ,�c�D��� on the line of
second-order phase transitions, where the amplitude of lead-
ing corrections to scaling vanishes. Our recent estimate is
D�=0.656�20� �Ref. 12�. In Ref. 12 we have simulated the
model at D=0.655 close to �c on lattices of a linear size up
to L=360. From a standard finite-size scaling analysis of
phenomenological couplings like the Binder cumulant we
find �c�0.655�=0.387721735�25�. Furthermore the ampli-
tude of leading corrections to scaling is at least by a factor of
30 smaller than for the spin-1/2 Ising model.

In Ref. 20 we have simulated the Blume-Capel model at
D=0.655 in the high-temperature phase on lattices of the
size L3 with periodic boundary conditions in all directions
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and L�10� for 201 values of �. We have measured the
second moment correlation length �2nd that we shall define
below. The simulation at �=0.3872, which was our closest to
�c, yielded �2nd=26.698�7�. Fitting these data for �2nd with
ansätze obtained by truncating the sequence of correction
terms at various order we arrive at

�2nd,0,+ = 0.2282�2� − 1.8�� − 0.63002�

+ 250��c − 0.387721735� , �5�

using t=�c−� as definition of the reduced temperature. In
these fits we have fixed �=0.63002 and �c=0.387721735
�Ref. 12�. We have redone the fits with slightly shifted values
of � and �c to determine the dependence of �2nd,0,+ on these
input parameters. For simplicity we shall use t=�c−� as
reduced temperature also in the following.

In the high-temperature phase there is little difference be-
tween �2nd and the exponential correlation length �exp which
is defined by the asymptotic decay of the two-point correla-
tion function. Following:21

lim
t↘0

�exp

�2nd
= 1.000200�3� �6�

for the thermodynamic limit of the three-dimensional sys-
tem. This means that at the level of our accuracy we can
ignore this difference. Note that in the following �0 always
refers to �2nd,0,+, Eq. �5�.

Film geometry and boundary conditions

In the present work we study the thermodynamic Casimir
effect for systems with film geometry. In the ideal case this
means that the system has a finite thickness L0 while in the
other two directions the thermodynamic limit L1 ,L2→	 is
taken. In our Monte Carlo simulations we shall study lattices
with L0
L1 ,L2 and periodic boundary conditions in the one
and two directions. Throughout we shall simulate lattices
with L1=L2=L.

In the zero direction we take symmetry-breaking bound-
ary conditions. In the reduced Hamiltonian of the Blume-
Capel model these can be implemented by

H = − ��
	xy


sxsy + D�
x

sx
2 − h1 �

x0=0,x1,x2

sx − h2 �
x0=L0+1,x1,x2

sx,

�7�

where h1 ,h2�0 break the symmetry at the surfaces that we
have put on x0=0 and x0=L0+1. Hence L0 gives the number
of layers in the interior of the film.

In our Monte Carlo simulations we consider the limit of
infinitely strong surface fields h1 and h2, which means that
the spins at the surface are fixed to either −1 or 1, depending
on the signs of h1 and h2. Therefore we have implemented in
our simulation code ++ boundary conditions by setting sx
=1 for all x with x0=0 or x0=L0+1 and +− boundary con-
ditions by setting sx=1 for all x with x0=0 and sx=−1 for all
x with x0=L0+1. Alternatively, these fixed spins could be
interpreted as finite surface fields with �h1�= �h2�=� acting on
the spins at x0=1 and x0=L0, respectively.

III. OBSERVABLES

A. Internal energy and free energy

The reduced free energy per area is defined by

f = −
1

L1L2
ln Z . �8�

This means that compared with the free energy per area f̃ , a
factor kBT is skipped.

Correspondingly we define the energy per area as the de-
rivative of minus the reduced free energy per area with re-
spect to �,

E =
1

L1L2

� ln Z

��
=

1

L1L2
	 �

	x,y

sxsy
 . �9�

It is straight forward to determine E in Monte Carlo simula-
tions. From the definition of E follows

f��� = f��0� − 

�0

�

d�̃E��̃� . �10�

B. Magnetization profile of films

The film is invariant under translations in the one and two
directions of the lattice. Therefore the magnetization only
depends on x0 and we can average over x1 and x2,

m�x0� =
1

L2 �
x1,x2

	sx
 . �11�

Since the film is symmetric for ++ boundary conditions and
antisymmetric for +− boundary conditions under reflections
at the middle of the film, m�x0�=m�L0−x0+1� for ++ bound-
ary conditions and m�x0�=−m�L0−x0+1� for +− boundary
conditions.

C. Second moment correlation length of the films

We have measured the second moment correlation length
of the films in the one and two directions of the lattice. To
this end we have computed the connected correlation func-
tion of the Fourier transformed field

G̃�k1,k2� = 	���k1,k2��2
 − ��k1,k2�,�0,0�L0L2m2, �12�

where m is the magnetization and the Fourier transformed
field

��k1,k2� =
1

�L0L2�
x

exp�i
2��k1x1 + k2x2�

L
�sx. �13�

For large L and small k1, k2, the correlation function behaves
as

G̃�k1,k2� =
C

4 sin2��k1/L� + 4 sin2��k2/L� + �2nd
−2 . �14�

The second moment correlation length �2nd can now be

evaluated by computing G̃�k1 ,k2� for two values of �k1 ,k2�
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and solving Eq. �14� with respect to �2nd
2 . In the limit L

→	 all choices of �k1 ,k2� lead to the same result for �2nd
2 .

However, for finite L the deviations from this limit increase
with increasing values of k1 and k2. Therefore, for +− bound-
ary conditions, we have computed the correlation function at
�k1 ,k2�= �0,0� and �1,0�. One gets

�2nd
2 =

G̃�0,0�/G̃�1,0� − 1

4 sin2��/L�
. �15�

In the simulation we have also measured G̃�0,1� and have

averaged G̃�1,0� and G̃�0,1� to reduce the statistical error.
In contrast to +− boundary conditions, for ++ boundary

conditions there is a finite magnetization at any finite tem-
perature. In order to avoid the technical complication of sub-
tracting the magnetization squared required for �k1 ,k2�
= �0,0�, Eq. �12�, we have used �k1 ,k2�= �1,0� and �1,1� to
determine the second moment correlation length

�2nd
2 =

G̃�1,0� − G̃�1,1�

�2G̃�1,1� − G̃�1,0��4 sin2��/L�
. �16�

In the simulations below we have chosen the lattice size L
such that the limit L→	 is well approximated. Hence �2nd is
a function of the parameters � and D of the model and the
thickness L0 of the film.

IV. FINITE-SIZE SCALING

The reduced excess free energy of the film behaves as

fex�L0,t� = f film�L0,t� − L0fbulk�t� � L0
−d+1h�t�L0/�0�1/�� ,

�17�

where f film�L0 , t� is the reduced free energy per area of the
film, fbulk�t� the reduced free-energy density of the bulk sys-
tem, h�t�L0 /�0�1/�� is the universal finite-size scaling function
of the excess free energy and d=3 is the dimension of the
bulk system. Here and in the following �0 is the amplitude of
the second moment correlation length of the bulk system in
the high-temperature phase.

Inserting the finite-size scaling ansatz �Eq. �17�� for the
excess free energy into Eq. �2� one gets

FCasimir � − kBT
��L0

−d+1h�t�L0/�0�1/���
�L0

=− kBTL0
−d�− �d − 1�h�t�L0/�0�1/��

+
1

�
t�L0/�0�1/�h��t�L0/�0�1/���

=kBTL0
−d��t�L0/�0�1/�� , �18�

where

��x� = �d − 1�h�x� −
x

�
h��x� �19�

is the finite-size scaling function of the thermodynamic Ca-
simir force and x= t�L0 /�0�1/�. This relation is well known
and can be found, e.g., in Ref. 7.

Following the discussion in Sec. IIIB of Ref. 11, taking
into account leading corrections to scaling one gets

fex�L0,t� = L0
−d+1h̄�x,a�D�L0

−��

= L0
−d+1h�x��1 + a�D�c�x�L0

−� + ¯� �20�

and correspondingly for the thermodynamic Casimir force
per area

FCasimir = kBTL0
−d�̄�x,a�D�L0

−��

= kBTL0
−d��x��1 + a�D�d�x�L0

−� + ¯� , �21�

where we have performed the Taylor expansion of h̄ and �̄ in
their second argument to leading order. The authors of Refs.
16 and 17 arrive at a similar expression as Eq. �21�. Fitting
their data, obtained for the Ising model, they have approxi-
mated the function d�x� by a constant. For the improved
model that we study here a�D��0 holds, which simplifies
the analysis of our data.

The exponent of the leading correction to scaling takes
the value �=0.832�6� �Ref. 12�. Furthermore there are sub-
leading corrections. Among these, the leading ones come
with the exponents ��=1.67�11� �Ref. 22� and due to the
breaking of rotational symmetry by the lattice ���2 �Ref.
23�. At the level of accuracy of our data, we can not resolve
the individual subleading corrections. In order to get some
estimate of the effect of these corrections on our final results,
we have included a term cL0

−2 into the ansätze �Eqs. �37�,
�39�, �45�, and �48�� below.

A discussion of corrections caused by the boundaries is
given in Sec. VA of Ref. 11. Corrections might arise from
irrelevant surface scaling fields. Furthermore Capehart and
Fisher24 have argued that there is an arbitrariness in the defi-
nition of the thickness of the film leading to corrections
�L0

−1. These two arguments might be actually unified: In a
real-space renormalization-group treatment of surface critical
phenomena one splits the reduced Hamiltonian into a bulk
and a surface part. In the neighborhood of the critical point,
one might expand the bulk and the surface part of the re-
duced Hamiltonian into so-called scaling fields. The basic
idea is that splitting the reduced Hamiltonian into a bulk and
a surface part is a priori quite ad hoc. Roughly speaking, one
might put the contribution for �1− ls� /2�x0�L0+ �1+ ls� /2
of Eq. �4� into the bulk part and the remainder into the sur-
face part. This way, the amplitudes of the surface scaling
fields become functions of ls. Here we do not elaborate what
sense can be given to noninteger values of ls. The amplitude
of the leading irrelevant surface scaling field, viewed as a
function of ls, might have a zero that we shall call Ls in the
following. Then this surface scaling field has the RG expo-
nent ys=−�s=−1. If there is only one surface scaling field
with the RG exponent ys=−1, corrections �L0

−1 can hence be
eliminated by replacing L0 by L0,ef f =L0+Ls in finite-size
scaling laws.

For the ordinary surface universality class, the problem of
corrections has been worked out in some detail. A field the-
oretical calculation25 predicts a single irrelevant scaling field
with the RG exponent ys=−1. These corrections to scaling
are related with the extrapolation length, which was intro-
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duced in the context of mean-field theory; See the review.8 It
is given by the zero of the extrapolated magnetization pro-
file. The authors of Ref. 26 have employed the concept of the
extrapolation length in their Monte Carlo study of the mag-
netization profile of the three-dimensional Ising model on the
simple cubic lattice with free boundary conditions, which
belong to the ordinary surface universality class. They have
simulated various values of the ratio w of the surface and the
bulk coupling. They find that the data for different values of
w only fall nicely on a single scaling curve, when the ex-
trapolation length that depends on w is properly taken into
account. Finally we like to mention that there had been at-
tempts to eliminate corrections due to the surface by a proper
choice of w.27

It is beyond the scope of the present manuscript to check
whether the result of the field theoretical calculation25 carries
over to the extraordinary surface universality class, which is
relevant for the present study. Our working hypothesis is that
there is only a single irrelevant surface scaling field with the
RG exponent ys=−1 which can be accounted for by an ef-
fective thickness L0,ef f of the film. Furthermore we assume
that there are no other irrelevant surface scaling fields with
ys�−2. The analysis of our precise numerical data for vari-
ous quantities provides a quite nontrivial challenge of this
hypothesis.

Finally let us spell out how the effective thickness L0,ef f
enters into finite-size scaling laws. For the thermodynamic
Casimir force one gets

FCasimir = kBTL0,ef f
−d ��t�L0,ef f/�0�1/�� , �22�

where both the prefactor L0
−d as well as the scaling variable

x= t�L0 /�0�1/� are replaced by L0,ef f
−d and x= t�L0,ef f /�0�1/�, re-

spectively.
We also study the finite-size scaling behavior of the sec-

ond moment correlation length of the film. Taking into ac-
count boundary corrections we get

�2nd,film = L0,ef fX�t�L0,ef f/�0�1/�� . �23�

The magnetization profile at the bulk critical point behaves
as

m�x0� = cL0,ef f
−�/���z/L0,ef f� , �24�

where z=x0−L0 /2−1 /2 gives the distance from the middle
of the film and c is a model specific constant that could be
fixed by the behavior of the magnetization or the magnetic
susceptibility in the thermodynamic limit. From scaling rela-
tions it follows that � /�= �1+�� /2, where �=0.03627�10�
for the three-dimensional Ising universality class.12 Note that
the scaling function ��z /L0,ef f� diverges as z /L0,ef f → �1 /2
since the magnetization in the neighborhood of the boundary
stays finite as L0→	 for the boundary conditions studied
here.

Thermodynamic Casimir force and the transfer matrix

The partition function of the system with fixed boundary
conditions can be expressed in terms of the eigenvalues of
the transfer matrix and the overlap of the eigenvectors with
the boundary states. Let us consider a lattice of the size L0

�L2, where L is large compared with the bulk correlation
length but still finite. We consider the transfer matrix T that
acts on vectors that are build on the configurations living on
L2 slices. We denote the eigenvalues of T by �� and the
corresponding eigenvector by ��
, where �
=0,1 ,2 , . . . ,�max. The eigenvalues are ordered such that ��

��� for ���. Note that T commutes with translations, ro-
tations, reflections, and with the change in the sign of all
spins in a slice. Therefore the states ��
 can be classified
according to their momentum, the angular momentum, their
parity, and their behavior under sign change in the spins.
Note that on the lattice, only a subgroup of the symmetries of
the continuum is realized. For a detailed discussion of the
implications of this fact see, for example, Sec. 3.2 of Ref. 28,
where the spectrum of the Ising gauge model in 2+1 dimen-
sions had been studied.

Now we can write the partition function of the system
with fixed boundaries as

Zb1,b2
= �

�

��
l 	b1��
	b2��
 , �25�

where l=L0+1 for our definition of the thickness L0. The
boundary states b1,2 can be either + or − here. Note that these
boundary states are invariant under all symmetries discussed
above except for the sign change in the spins. Therefore only
states ��
 with zero momentum, zero angular momentum,
and even parity have a nonvanishing overlap 	b ��
. Now we
can compute the thermodynamic Casimir force per area start-
ing from Eq. �25�,

1

kBT
FCasimir =

1

L2

�

�l
�ln Zb1,b2

− l ln �0�

=
1

L2

�
�

ln���/�0����/�0�l	b1��
	b2��


�
�

���/�0�l	b1��
	b2��

,

�26�

where �0 is the largest eigenvalue. Introducing the inverse
correlation lengths 1 /��=m�=−ln��� /�0� we get

1

kBT
FCasimir = −

1

L2

�
�

m� exp�− m�l�	b1��
	b2��


�
�

exp�− m�l�	b1��
	b2��

.

�27�

This equation proves that for b1=b2 the thermodynamic Ca-
simir force takes negative values. In the high-temperature
phase, in the zero momentum sector, the second largest ei-
genvalue �1 is well separated from larger eigenvalues. There-
fore the behavior of the thermodynamic Casimir force for l
��1=�=1 /m, which corresponds to large values of the scal-
ing variable x, is given by
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�̃�ml� �
l3

kBT
FCasimir

� −

ml3 exp�− ml�
1

L2 	b1�1
	b2�1


	b1�0
	b2�0
 + exp�− ml�	b1�1
	b2�1


�− m3l3 exp�− ml�
1

m2L2

	b1�1
	b2�1

	b1�0
	b2�0


. �28�

The finite-size scaling behavior �Eq. �18�� of the thermody-
namic Casimir force implies that

C�b� =
1

mL

	b�1

	b�0


�29�

has a finite scaling limit. The state �0
 is symmetric under the
global transformation sx→−sx for all x in a slice. Instead, �1

is antisymmetric and therefore C=C�+�=−C�−�. It follows

�̃++�ml� = − �̃+−�ml� = − C2m3l3 exp�− ml� �30�

for sufficiently large values of ml. Since x= t�l /�0�1/�

��ml�1/� it follows

�++�x� = − �+−�x� = − C2x3� exp�− x�� �31�

for sufficiently large values of x. In the low-temperature
phase, the situation is more complicated. Also here, for finite
L the state �0
 is symmetric under sx→−sx while �1
 is anti-
symmetric. The corresponding correlation length �t=
−1 / ln��1 /�0� is the so-called tunneling correlation length. It
diverges as �t�exp��L2� in the limit L→	, where � is the
interface tension. It is characteristic for the low-temperature
phase, and a consequence of spontaneous symmetry breaking
that pairs of eigenvalues, where one is symmetric and the
other antisymmetric under sx→−sx, become degenerate in
the limit L→	. The bulk correlation length in the low-
temperature phase is given by �=−limL→	 1 / ln��2 /�0�=
−limL→	 1 / ln��3 /�0�. Taking into account the states �=0, 1,
2, and 3 we get

1

kBT
FCasimir � −

1

L2

m2 exp�− m2l�	b1�2
	b2�2
 + m3 exp�− m3l�	b1�3
	b2�3

	b1�0
	b2�0
 + exp�− mtl�	b1�1
	b2�1


, �32�

where we have skipped the contribution of �=1 in the nu-
merator since mt vanishes in the limit L→	. Furthermore,
we have skipped the contributions of �=2 and 3 in the de-
nominator since for m2l ,m3l�1 they are small compared
with those of �=0 and 1. For +− boundary conditions
	+��
	−��
 is positive for states that are symmetric and nega-
tive for states that are antisymmetric under the spin flip.
Therefore both in the numerator and the denominator there is
a cancellation between the two terms. Extracting useful in-
formation from Eq. �32� would require detail knowledge of
the approach of mt, m2, m3, and the overlap amplitudes to the
limit L→	.

On the other hand for ++ boundary conditions 	+��
	+��

is positive for any �. Therefore in Eq. �32� the two terms in
the numerator and the denominator add up. In the limit L
→	, where mt=0 and m=m2=m3 we get a result analogous
to Eq. �30�. We only have to notice that in the definition of
the scaling variable x the amplitude �0,+ of the correlation
length in the high-temperature phase enters. Therefore taking
into account the universal amplitude ratio �0,+ /�0,−
=1.901�14� �Ref. 20� for the exponential correlation length
we get

�++�x� = − C̄2�− 1.901�14�x�3�exp�− �− 1.901�14�x���
�33�

for sufficiently small values of x in the low-temperature
phase. For a discussion of the spectrum and the symmetry
properties of the eigenvectors of the transfer matrix see, e.g,
Ref. 29. Equations �31� and �33� had been derived before by

using the de Gennes-Fisher local-functional method, see Eq.
�6� of Ref. 18. Exact results for the Ising strip30 and mean-
field theory31 confirm the exponential decay of �++�x� for
large �x�.

V. MONTE CARLO ALGORITHMS

A. ++ boundary conditions

In the case of ++ boundary conditions we have used a
hybrid of a cluster update and a local heat bath algorithm.32

The cluster algorithm can only change the sign of the spins.
Therefore local heat bath updates are needed to get an er-
godic algorithm. For the cluster algorithm, we have used the
same probability to freeze or delete a link 	xy
 as it is used in
the original Swendsen-Wang33 algorithm,

pd�sxsy� = min�1,exp�− 2�sxsy�� . �34�

Links are deleted with the probability pd�sxsy�, otherwise
they are frozen. A cluster is a set of sites that is connected by
frozen links. In the following we mean by “flipping a clus-
ter” that the sign of all spins sx, where the site x belongs to
the cluster, is changed �flipped�. In one step of the
Swendsen-Wang cluster algorithm, the lattice is completely
decomposed into clusters. A cluster is then flipped with the
probability 1/2. In contrast, in the case of the Wolff single
cluster algorithm,34 one site of the lattice is chosen randomly.
Then only the cluster that contains this site is constructed.
This cluster is flipped with probability 1. Here we have to
deal with the boundaries. For links 	xy
, where either x or y
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belongs to the boundary we shall apply the same freeze or
delete probability �Eq. �34�� as for links 	xy
, where none of
the two sites belongs to the boundary. Since spins on the
boundary are fixed to one, clusters that contain sites on the
boundary cannot be flipped. Motivated by this fact, we have
flipped all clusters with probability one that do not include
sites on the boundary. In practice this is done in the follow-
ing way: first we compute all clusters that include sites on
the boundary. Then all spins on sites that do not belong to
these clusters are flipped.

With the local heat bath algorithm we run through the
lattice in typewriter fashion. Running through the lattice
once is called one “sweep” in the following. One cycle of the
hybrid algorithm is composed of two sweeps of the local
heat bath algorithm followed by one cluster update as dis-
cussed above. At the bulk critical point the integrated auto-
correlation time of the energy is �int,E�3 in units of update
cycles for a lattice of the size L0=32, L1=L2=128. The in-

tegrated autocorrelation times for G̃�1,0� and G̃�1,1� are
smaller.

B. +− boundary conditions

We could not use the program written for the ++ bound-
ary conditions for the +− boundary conditions since it relies
on the fact that all spins that belong to clusters that include
sites on the boundary are equal to +1. For simplicity we
therefore have used a local Metropolis algorithm that was
implemented by using the multispin coding technique.35 De-
tails of our implementation can be found in Ref. 12. In Ref.
12 we have found a performance gain of our Metropolis
update using the multispin coding technique of about a factor
of 10 compared with the heat bath algorithm, implemented in
a standard way.

Likely, for small values of L0 the local Metropolis algo-
rithm implemented by using the multispin coding technique
outperforms the hybrid of local heat bath and cluster algo-
rithm in the case of ++ boundary conditions. For lack of time
we did not check this.

In the low-temperature phase, for +− boundary conditions
rather large autocorrelations arise. These are due to fluctua-
tions of the interface between the + and the − phases. As
discussed in Ref. 36 standard cluster algorithms are not suit-
able to overcome this problem. Unfortunately, the algorithm
discussed in Ref. 36 only works well in the Ising limit. In all
our simulations we have used the SIMD-oriented Fast
Mersenne Twister algorithm37 as random number generator.

VI. SIMULATIONS AT THE BULK CRITICAL POINT

Here we focus on the finite-size scaling behavior of vari-
ous quantities at the bulk critical point. This way we accu-
rately compute Ls, which characterizes the corrections
caused by the boundary conditions. To this end we have per-
formed two sets of simulations. First we have simulated
films of the size L0�L2 to determine the second moment
correlation length in one and two directions, the energy per
area of the films and the magnetization profile. Then we
computed the differences

�f�L0,�c� = f�L0 + 1/2,�c� − f�L0 − 1/2,�c� �35�

of free energies per area, where L0+1 /2 and L0−1 /2 assume
integer values. To this end, we have simulated a lattice with
L0−1 /2 complete layers and one incomplete layer.
�f�L0 ,�c� is then given by the free energy required to add a
single site to this incomplete layer. For details of the method
see Ref. 38.

A. Correlation length and energy per area at the bulk critical
point

For both +− and ++ boundary conditions we
have simulated lattices of the thicknesses L0
=6 ,7 ,8 , . . . ,26,28,30,32. Throughout we have used L
=4L0. At the bulk critical point, the correlation length of
films with ++ boundary conditions is �2nd�0.13L0 and for
+− boundary conditions �2nd�0.21L0, as we shall see below.
Therefore this choice of L is sufficient to get a good approxi-
mation of the limit L→	. Throughout we have performed
100.000.000 update cycles for ++ boundary conditions and
64�5.000.000 measurements for +− boundary conditions.
In the case of +− boundary conditions up to 18 Metropolis
sweeps were performed for each measurement. In total the
simulations took 1 year and 1.5 years on one core of a Quad-
Core AMD Opteron™ Processor 2378 running at 2.4 GHz
for ++ and +− boundary conditions, respectively.

We have fitted the second moment correlation length at
the critical point of the bulk system with the ansatz

�2nd = c�L0 + Ls� �36�

and to check for the possible effect of subleading corrections

�2nd = c�L0 + Ls��1 + b�L0 + Ls�−2� . �37�

For ++ boundary conditions, fitting with ansatz �Eq. �36�� we
get for L0,min=12 the results c=0.1303�2�, Ls=1.89�3�, and
�2 /degree of freedom �DOF�=0.83. In this fit we have
taken all data with L0�L0,min into account. Using instead the
ansatz �Eq. �37�� we get for L0,min=6 the results c
=0.1303�2�, Ls=1.89�4�, and �2 /DOF=0.94.

For +− boundary conditions, fitting with ansatz �Eq. �36��
we get for L0,min=14 the results c=0.2111�3�, Ls=2.01�3�,
and �2 /DOF=1.97. Using instead the ansatz �Eq. �37�� we
get for L0,min=8 the results c=0.2119�4�, Ls=1.81�6�, and
�2 /DOF=2.08. In both cases, the �2 /DOF does not further
decrease with increasing L0,min.

We conclude that the results obtained for Ls for the ++
and the +− boundary conditions are both consistent with Ls
�1.9. We have checked that the error of �c can be safely
ignored.

Next we have fitted the excess energy per area at the bulk
critical point with the ansatz

Eex�L0,�c� = B + a�L0 + Ls�−2+1/�, �38�

where we have used Ebulk��c�=0.602111�1� �Ref. 20� to
compute Eex�L0 ,�c� and we have fixed �=0.63002 �Ref. 12�.
The parameters of the fit are B, a, and Ls. Note that B cor-
responds to a correction of the analytic background caused
by the boundaries that only depends on the local properties
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of the system at the boundaries and therefore takes the same
value for ++ and +− boundary conditions. In order to esti-
mate errors due to subleading corrections we have also fitted
with

Eex�L0,�c� = B + a�L0 + Ls�−2+1/��1 + c�L0 + Ls�−2� ,

�39�

where we have included quadratic corrections.
For ++ boundary conditions we get with the ansatz �Eq.

�38�� for L0,min=8 the results B=7.1893�3�, a=−8.045�1�,
Ls=1.915�2�, and �2 /DOF=0.79. Using the ansatz �Eq. �39��
and L0,min=6 we get B=7.1888�2�, a=−8.042�1�, Ls
=1.905�1�, and �2 /DOF=0.96.

Instead, for +− boundary conditions we get using the an-
satz �Eq. �38�� for L0,min=13 the results B=7.1947�4�, a=
−12.207�2�, Ls=1.966�3�, and �2 /DOF=0.60. Using ansatz
�Eq. �39�� we get for L0,min=8 the results B=7.1864�5�, a=
−12.156�3�, Ls=1.830�6�, and �2 /DOF=0.53. The results of
the two ansätze �Eqs. �38� and �39�� differ by several stan-
dard deviations, indicating that the systematical error due to
corrections to scaling is clearly larger than the statistical one.
Here we try to estimate this error from the difference be-
tween the results of the two ansätze �Eqs. �38� and �39��.
Furthermore we have redone the fits above using shifted val-
ues for the input parameters Ebulk��c� and � to estimate the
effect of their uncertainty on our results. In particular, we
find that by using �=0.63012 instead of �=0.63002 the val-
ues of our fit parameters shift considerably. For example, for
++ boundary conditions and L0,min=8 using ansatz �Eq. �38��
we get B=7.1912�3�, a=−8.040�1�, Ls=1.909�2�, and
�2 /DOF=0.78. Taking into account the results of both ++
and +− boundary conditions we arrive at

B = 7.189�6� , �40�

Ls = 1.9�1� , �41�

a++ = − 8.04�1� , �42�

a+− = − 12.18�3� , �43�

where we have taken the error mainly from the difference
between the two different ansätze for the +− boundary con-
ditions. We notice that the result obtained for Ls is fully
consistent with that obtained from the analysis of the second
moment correlation length above.

B. Magnetization profile at the critical point

In order to determine the constant Ls we have studied the
magnetization at z=x0− �L0+1� /2=0, i.e., in the middle of
the film, for ++ boundary conditions. In the case of odd L0
we did use directly the value of the magnetization at z=0. In
the case of even L0 we extrapolated the values of m at z
=3 /2 and z=1 /2 to z=0, assuming a quadratic dependence
on z. For example, for L0=24, 25, 26, 28, 30, and 32 we get
m �z=0=0.248488�6�, 0.243670�4�, 0.239111�4�, 0.230695�4�,
0.223091�4�, and 0.216181�4�, respectively.

Following Eq. �24�, we have fitted our data with the an-
satz

m�z=0 = Cm�L0 + Ls�−�/�, �44�

where Cm and Ls are the parameters of the fit. Note that
� /�= �1+�� /2 follows from scaling relations among the
critical exponents. In our fits, we have fixed �=0.03627
�Ref. 12�. In order to check for the effect of possible correc-
tions, we have used in addition

m�z=0 = Cm�L0 + Ls�−�/��1 + c�L0 + Ls�−2� . �45�

Fitting with the ansatz �Eq. �44�� we find that the result for Ls
is slowly decreasing with an increasing minimal thickness
L0,min that is included into the fit. For L0,min=20 we find that
�2 /DOF is still larger than two. For L0,min=24 we get Cm
=1.34250�10�, Ls=1.937�4�, and �2 /DOF=0.34. We have
redone the fit with �=0.03637 instead of the central value
�=0.03627. We find that the effect on Cm and Ls is much
less than the statistical errors quoted above. Fitting with the
ansatz �Eq. �45�� we find for L0,min=16 the results Cm
=1.34171�17�, Ls=1.867�12�, and �2 /DOF=0.55. Also here
we find that the error due to the uncertainty of � is small
compared with the statistical error quoted. Our results for Ls
are in very good agreement with those obtained above.

Finally in Fig. 1 we plot L0,ef f
�/� m�z� as a function of

z /L0,ef f using Ls=1.9 and �=0.03627 for ++ and +− bound-
ary conditions. To this end we have used all thicknesses
available with L0�16. The statistical errors are much
smaller than the symbols that are used. For z /L0,ef f �0.4 the
points fall nicely on unique curves for ++ and +− boundary
conditions, respectively. For larger values of z a small scat-
tering of the data can be observed. As the boundary is ap-
proached, this means z→1 /2, the curves for ++ and +−
boundary conditions fall on top of each other.
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FIG. 1. �Color online� We plot L0,ef f
�/� m�z� as a function of

z /L0,ef f, where z=x0− �L0+1� /2 gives the distance from the middle
of the film. The effective thickness of the film is L0,ef f =L0+Ls using
Ls=1.9. For ++ and +− boundary conditions, data for films with
L0�16 are used.
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C. Casimir force at the critical point

We have computed

�f�L0,�c� = f�L0 + 1/2,�c� − f�L0 − 1/2,�c� �46�

using the algorithm discussed in Ref. 38. We have simulated
++ and +− boundary conditions on lattices of the thicknesses
L0=6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 15.5, 19.5, 23.5,
27.5, 31.5, and 39.5. For all these simulations, we have used
L�8L0. We have checked that this is sufficient to avoid fi-
nite L corrections. These simulations took in total about 10
months of CPU time on one core of a Quad-Core AMD
OPTERON™ Processor 2378 running at 2.4 GHz. As update
we have used the local heat bath algorithm. For lack of time
and the still moderate amount of CPU time that was spent
here, we made no effort to implement cluster updates or to
implement the method using the multispin coding technique.

We have fitted our data with the ansätze

�f�L0,�c� = fbulk��c� − ��0��L0 + Ls�−3 �47�

and in order to check for the effect of subleading corrections
to scaling

�f�L0,�c� = fbulk��c� − ��0��L0 + Ls�−3�1 + c�L0 + Ls�−2� .

�48�

Fitting with the ansatz �Eq. �47�� we get for the ++ boundary
conditions and L0,min=11.5 the results fbulk��c�=
−0.0757368�3�, ��0�=−0.815�10�, Ls=1.86�5�, and
�2 /DOF=0.36. Using the ansatz �Eq. �48�� and L0,min=6.5
we get the results fbulk��c�=−0.0757370�2�, ��0�=
−0.824�5�, Ls=1.91�4�, and �2 /DOF=0.51.

Fitting with the ansatz �Eq. �47�� we get for the +− bound-
ary conditions and L0,min=11.5 the results fbulk��c�=
−0.0757368�2�, ��0�=5.617�16�, Ls=1.930�13�, and
�2 /DOF=1.11. Using the ansatz �Eq. �48�� and L0,min=6.5
we get the results fbulk��c�=−0.0757368�2�, ��0�
=5.610�14�, Ls=1.912�17�, and �2 /DOF=0.81.

We notice that the results for fbulk��c� obtained from the
two different boundary conditions are consistent. We con-
clude

fbulk��c� = − 0.0757368�4� . �49�

Also the values for Ls obtained here are fully consistent with
the estimate Ls=1.9�1� found above. As our result for the
finite-size scaling functions at the critical point of the bulk
system we quote

�++�0� = − 0.820�15� , �50�

�+−�0� = 5.613�20� . �51�

Also here we have checked that the uncertainty of �c can be
safely ignored. For a comparison of these results with previ-
ous ones given in the literature, see Table III below.

VII. NUMERICAL RESULTS FOR THE CASIMIR FORCE
IN A LARGE RANGE OF TEMPERATURES

Here we compute the Casimir force using the method dis-
cussed by Hucht.41 The details of the implementation are

similar to Ref. 42, where we have studied the thermody-
namic Casimir force for films with free boundary conditions
in the three-dimensional XY universality class.

We have simulated the model for both types of boundary
conditions and the thicknesses L0=8, 9, 16, 17, 32, and 33
for a large number of � values in the neighborhood of the
critical point. In Tables I and II we give the � values at
which we have simulated and the statistics of our runs for the
+− and the ++ boundary conditions, respectively. In the case
of +− boundary conditions we also give the lattice size L that
was used. Since for +− boundary conditions the correlation
length is increasing with increasing � also L has to increase
with increasing �. In contrast, for ++ boundary conditions,
the correlation length stays rather small for all temperatures.
It has a maximum quite close to the critical point. Therefore
we have used L=32 for L0=8, 9, L=64 for L0=16, 17, and
L=128 for L0=32, 33 at all values of �, where we have
simulated at.

We have measured the energy per area. Using these data
we have computed

�E�L0,�� = E�L0 + 1/2,�� − E�L0 − 1/2,�� − Ebulk��� .

�52�

The value for the energy density of the bulk system Ebulk���
is taken from simulations of L3 or 2L�L2 lattices with peri-
odic boundary conditions in all three directions. The linear
lattice size L is taken sufficiently large to avoid significant
finite-size effects. For most values of � simulated here we
have also a direct measurement of Ebulk���. In a small neigh-
borhood of �c we have used instead the result of a fit with
the ansatz

Ebulk��� = Ens + Cns�� − �c� + a��� − �c�1−� + dns�� − �c�2

+ b��� − �c�2−�. �53�

For a discussion see Sec. IVA of Ref. 20. Throughout the
statistical error of Ebulk��� is clearly smaller than that of
E�L0+1 /2,��−E�L0−1 /2,��. Also the systematical error
caused by the interpolation with the ansatz �Eq. �53�� can be
safely ignored here.

In order to obtain �fex we have numerically integrated
�Eex using the trapezoidal rule,

− �fex��n� � �
i=0

n−1
1

2
��i+1 − �i���Eex��i+1� + �Eex��i�� ,

�54�

where �i are the values of � we have simulated at. They are
ordered such that �i+1
�i for all i. The starting point of the
integration �0 is chosen such that �Eex��0�=0 within the
statistical error.

The estimate obtained from the integration is affected by
statistical and systematical errors. The statistical one can be
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easily computed since the �Eex are obtained from indepen-
dent simulations,

�2�− �fex��n�� =
��1 − �0�2

4
�2��Eex��0��

+
��n − �n−1�2

4
�2��Eex��n��

+ �
i=1

n−1
��i+1 − �i−1�2

4
�2��Eex��i�� , �55�

where �2 denotes the square of the statistical error.
In order to estimate the error due to the finite step size

�i+1−�i we have redone the integration, skipping every sec-
ond value of �; i.e., doubling the step size. We find that the
finite step size errors are at most of the size of the statistical
ones.

In Figs. 2 and 3 we have plotted our results for the finite-
size scaling functions �+−�x� and �++�x�, respectively. The
solid lines that are plotted linearly interpolate between the
data points that we have computed. Note that the statistical
error of �fex�L0�L0

3 is of similar size as the thickness of the
line. In both cases, in the upper figure we do not take into
account any correction to scaling. This means we plot
−�fex�L0�L0

3 as a function of t�L0 /�0�1/�, using �=0.63002.
Not taking into account any correction, we see for both ++

and +− boundary conditions a clear discrepancy between the
curves for L0=8.5, 16.5, and 32.5.

Therefore in the lower part of Figs. 2 and 3 we have
replaced L0 by L0,ef f =L0+Ls, using the value Ls=1.9 ob-
tained above from the finite-size scaling study at the bulk
critical point. This means that we have plotted
−�fex�L0��L0+Ls�3 as a function of t��L0+Ls� /�0�1/�. Now
the curves essentially fall on top of each other. Therefore we
do not consider further corrections and take the curves ob-
tained for L0=16.5 and 32.5 as our final result. The remain-
ing small difference between L0=16.5 and 32.5 gives us
some measure for the systematical error of our final result.

Now let us discuss the properties of �++�x� and �+−�x�. We
see that �++�x� is negative and �+−�x� is positive in the whole
range of x. This means that in the case of ++ boundary con-
ditions the force is attractive while for +− boundary condi-
tions it is repulsive. In both cases the function shows a single
extremum. In the case of ++ boundary conditions it is lo-
cated in the high-temperature phase while for +− it is in the
low-temperature phase. In order to accurately locate these
extrema, we have computed the zeros of �E�L0 ,��. For ++
boundary conditions we find �min=0.37407�3�, 0.38219�2�,
and 0.38569�2� for L0=8.5, 16.5, and 32.5, respectively. For
these values of �min we have computed xmin= tmin��L0
+Ls� /�0�1/� and correspondingly �min=−�fex��min��L0+Ls�3.
As our final result we take the value obtained for L0=32.5
using Ls=1.9, �=0.63002, and �0=0.2282. We arrive at

TABLE I. Statistics of our runs for the +− boundary conditions. In the first column we give the thickness
that is considered, where, for example, L0=8.5 means that we have simulated films of the thicknesses L0

=8 and 9. In the second column we give the linear extension L of the lattice in one and two directions. We
have simulated at �i=�min+ i�� in the interval ��min ,�max�. In the last column we give the number of
measurements for each of the simulations.

L0 L �min �max �� Stat

8.5 32 0.25 0.325 0.005 200.000

8.5 32 0.33 0.348 0.002 200.000

8.5 32 0.35 0.38 0.001 200.000

8.5 32 0.381 0.385 0.001 300.000

8.5 64 0.385 0.43 0.001 150.000

8.5 96 0.43 0.46 0.002 100.000

8.5 128 0.46 0.5 0.002 100.000

8.5 256 0.505 0.56 0.005 100.000

16.5 64 0.34 0.348 0.002 200.000

16.5 64 0.35 0.384 0.001 200.000

16.5 64 0.385 0.395 0.0005 200.000

16.5 128 0.395 0.41 0.001 100.000

16.5 256 0.412 0.42 0.002 100.000

16.5 512 0.422 0.43 0.002 100.000

16.5 512 0.44 0.44 0.01 100.000

32.5 128 0.36 0.355 0.005 1000.000

32.5 128 0.365 0.368 0.001 1000.000

32.5 128 0.369 0.3875 0.0005 1000.000

32.5 128 0.3875 0.39125 0.00025 1000.000

32.5 256 0.3915 0.395 0.0005 250.000
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x++,min = 5.82�10� �++,min = − 1.76�3� , �56�

where the quoted error takes into account the statistical error
and the errors due to the uncertainties of Ls, �0, and �.

For +− boundary conditions we find �max=0.39961�2�,
0.39256�2�, and 0.389525�10� for L0=8.5, 16.5, and 32.5,
respectively. In the same way as above for ++ boundary
conditions we arrive at

x+−,max = − 5.17�7� �+−,max = 6.56�10� . �57�

At the bulk critical point we get �++�0�=0.84�2� and
�+−�0�=5.56�7�. These results are less precise but fully con-
sistent with those obtained in the previous section, Eqs. �50�
and �51�.

In Ref. 43 we have demonstrated at the example of films
with periodic and free boundary conditions in the three-
dimensional XY universality class that the relation ��x�
=2h�x�− x

�h��x�, Eq. �19�, can be employed to compute ��x�
from the excess energy per area of the film, without taking
the derivative with respect to the thickness L0 of the film.

The main practical problem of this approach is that for
free boundary conditions as well as symmetry-breaking
boundary conditions that are studied here, the analytic part of
the free energy per area and hence also of the energy per area
suffers from a boundary correction that is not described by
L0,ef f =L0+Ls of the singular part. In Sec. VI A we have al-
ready determined the value of this correction at the bulk
critical point. However it turns out that it is not sufficient

here to approximate this correction by a constant. Even by
adding a term linear in the reduced temperature t to the ana-
lytic boundary correction, we could not reliably compute
�++�x� and �+−�x�. We made no attempt to improve this by
adding higher order terms.

A. Behavior at large �x�

In Fig. 4 we have plotted �++�x� and −�+−�x� in the high-
temperature phase. For comparison we have plotted �++�x�
given by Eq. �31�. We have fixed the constant C2 by match-
ing the value at x�20, where �++�x� and −�+−�x� still agree
within the error bars. We find

C2 = 1.5�1� . �58�

Indeed for x�20 at the level of our accuracy �++�x� and
−�+−�x� are equal. In the same range, the two curves are well
approximated by Eq. �31�.

Next let us turn to the low-temperature phase. We have
matched Eq. �33� with our numerical results obtained for

TABLE II. Statistics of our runs for the ++ boundary conditions.
The notation is the same as in the previous table for +− boundary
conditions. Here we have used L=4�L0−1 /2� for all values of �.

L0 �min �max �� Stat

8.5 0.25 0.295 0.005 5.000.000

8.5 0.3 0.348 0.002 5.000.000

8.5 0.35 0.358 0.002 10.000.000

8.5 0.36 0.378 0.001 10.000.000

8.5 0.379 0.395 0.0005 10.000.000

8.5 0.396 0.409 0.001 10.000.000

8.5 0.41 0.43 0.002 10.000.000

16.5 0.31 0.33 0.01 10.000.000

16.5 0.34 0.352 0.002 10.000.000

16.5 0.354 0.379 0.001 10.000.000

16.5 0.38 0.382 0.0005 10.000.000

16.5 0.3825 0.39225 0.00025 10.000.000

16.5 0.393 0.399 0.001 10.000.000

16.5 0.4 0.406 0.002 10.000.000

32.5 0.37 0.375 0.001 10.000.000

32.5 0.376 0.3795 0.0005 10.000.000

32.5 0.38 0.3856 0.0002 10.000.000

32.5 0.3858 0.3889 0.0001 10.000.000

32.5 0.389 0.3918 0.0002 10.000.000

32.5 0.392 0.3945 0.0005 10.000.000

32.5 0.395 0.396 0.001 10.000.000
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FIG. 2. �Color online� +− boundary conditions. In the upper part
of the figure we plot −L0

3�fex as a function of t�L0 /�0�1/� for L0

=8.5, 16.5, and 32.5, where we use �=0.63002 and �0=0.2282. In
the lower part we have replaced L0 by L0,ef f =L0+Ls with Ls=1.9.
For a discussion see the text.
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L0=16.5 and 32.5 and ++ boundary conditions at x�−7. We
get

C̄2 = 0.20�5� . �59�

As one can see from Fig. 5 there is reasonable match be-
tween our numerical results for �++�x� and Eq. �33� for x�
−5. In Fig. 5 we have plotted the statistical error of our
results. The fact that for small x, within less than two stan-
dard deviations, the estimate of �++�x� computed for L0
=16.5 and L0=32.5 becomes equal to zero is a nontrivial
validation of our numerical integration.

B. Correlation length of the films

For all simulations discussed above we have measured the
second moment correlation length as defined in Sec. III C.
The correlation length is interesting for practical purpose
since we have to choose the lattice size L in one and two
directions such that L��2nd in order to avoid sizable effec-

tively two-dimensional finite-size effects. Furthermore we
shall discuss the finite-size scaling behavior of the second
moment correlation length of the film to further probe the
theoretical expectations on corrections to scaling.

To this end, we have plotted in Fig. 6 for ++ boundary
conditions �2nd /L0,ef f of the film as a function of the scaling
variable x= t�L0,ef f /�0�1/� for the thicknesses L0=8, 9, 16, 17,
32, and 33. Using Ls=1.9 instead of Ls=0 clearly improves
the collapse of the curves obtained from different thicknesses
L0. Using Ls=1.9, in the range −20�x�20 the curves ob-
tained for different thicknesses fall on top of each other
within the error bars. For larger values of x there is some
discrepancy between the thicknesses L0=8 and 9 and L0
=16, 17, 32, and 33 on the other hand. This can be attributed
to analytic corrections to scaling. For all thicknesses
�2nd /L0,ef f assumes a single maximum at x�7.

Figure 7 is the analogue of Fig. 6 for +− instead of ++
boundary conditions. Also here we find, using Ls=1.9 a nice
collapse of the curves obtained for the different thicknesses
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FIG. 3. �Color online� ++ boundary conditions. In the upper part
of the figure we plot −L0

3�fex as a function of t�L0 /�0�1/� for L0

=8.5, 16.5, and 32.5, where we use �=0.63002 and �0=0.2282. In
the lower part we have replaced L0 by L0,ef f =L0+Ls with Ls=1.9.
For a discussion see the text.
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FIG. 4. �Color online� We plot our numerical results for �++�x�
and −�+−�x� obtained with L0=16.5 and 32.5 using Ls=1.9 for x

0. For comparison we give the result of Eq. �31�, setting C2

=1.5. For a discussion see the text.
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FIG. 5. �Color online� We plot our numerical results for �++�x�
obtained with L0=16.5 and 32.5 using Ls=1.9 for x�0. For com-

parison we give the result of Eq. �33�, setting C̄2=0.2. For a dis-
cussion see the text.
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of the films. Now �2nd /L0,ef f is monotonically increasing
with decreasing x. In Fig. 7 we have stopped, a bit arbitrary,
at x=−50. For x�−79.7, the smallest value of x that we have
reached for L0=9, we get �2nd /L0,ef f �3.5.

With an increasing correlation length the autocorrelation
time of the Metropolis update increases. Therefore simula-
tions become increasingly difficult as we go deeper into the
low-temperature phase, toward smaller values of x. As a con-
sequence we had to stop at x�−20.4 and −21.3 for L0=32
and 33, respectively.

VIII. COMPARISON WITH OTHER THEORETICAL
RESULTS AND EXPERIMENTS

The scaling functions �++ and �+− have been computed
recently by using Monte Carlo simulations of the spin-1/2

Ising model on the simple cubic lattice.16,17 The results are
presented in Figs. 3 and 4 of Ref. 16 and Figs. 9 and 10 of
Ref. 17 for ++ and +− boundary conditions, respectively. For
both types of boundary conditions, the final result depends
strongly on the precise form of the ansatz, see Eqs. �18�,
�20�, �21�, and �23� of Ref. 17, for corrections to scaling that
is chosen. Qualitatively, the curves for both ++ and +−
boundary conditions agree with ours. For the position of the
extrema the authors of Ref. 17 quote x++,min=5.90�8� and
x+−,max=−5.4�1� in the caption of their Figs. 9 and 10, re-
spectively. These are in quite good agreement with our re-
sults. In Refs. 44 and 45, see the discussion below Eq. �14�
of Ref. 45, the authors extract the amplitude C2 from the data
of Ref. 17. Their result depends on the ansatz that is chosen
for the corrections and also on the boundary conditions. Us-
ing the ansatz that is denoted by �i� in Figs. 9 and 10 of Ref.
17, they find C2=1.51�2� and 1.82�2� for ++ and +− bound-
ary conditions, respectively. Instead, using the ansatz that is
denoted by �ii� they arrive at C2=1.16�2� and 1.38�2�, re-
spectively. It is clear from these numbers that systematical
errors due to corrections to scaling are much larger than sta-
tistical errors. Taking this into account, there is nice agree-
ment with our estimate C2=1.5�1�, Eq. �58�.

In Fig. 8 we compare our result for �++�x� with that ob-
tained by using the de Gennes-Fisher local-functional
method.18 As input the method uses universal amplitude ra-
tios of the bulk system. Here we made no effort to redo the
calculations of Ref. 18 using our updated values for the uni-
versal amplitude ratios20 and value for the exponent � �Ref.
12�. Instead, we have copied the curve from Fig. 1 of Ref.
18. Overall we find a reasonable agreement with our result.
We see a very small shift of the local-functional method
curve toward larger values of x compared with ours. Clearly,
the value of the minimum of the curve obtained by the local-
functional method is smaller than that of ours.

The authors of Ref. 40 have studied wetting films of a
binary mixture of methylcyclohexane and perfluoromethyl-
cyclohexane. They have deduced the thermodynamic Ca-
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FIG. 6. �Color online� For ++ boundary conditions, we plot
�2nd /L0,ef f as a function of the scaling variable x= t�L0,ef f /�0�1/� for
L0=8, 9, 16, 17, 32, and 33 using Ls=1.9. Notice that �2nd is the
second moment correlation length of the film while �0 appearing in
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FIG. 8. �Color online� We plot the result of Ref. 18 for �++�x�
obtained by using the de Gennes-Fisher local-functional �LF�
method. We have copied the curve from Fig. 1 of Ref. 18. For
comparison we plot our numerical results for �++�x� obtained with
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simir force from measurements of the thickness of the film.
Their result for �+−�x� given in Fig. 3 of Ref. 40 is more or
less consistent with but much less precise than our result.
The authors of Refs. 44 and 45 have studied the thermody-
namic Casimir force between colloidal particles that are im-
mersed into a mixture of water and lutidine and the surface
of the cell. The surface of the particle was prepared such that
it either preferentially absorbs water or lutidine. Hence both
++ and +− boundary conditions were accessible. A major
problem in the interpretation of the experimental data is to
disentangle the thermodynamic Casimir force from other
forces. It turns out that only for relatively large x, reliable
results could be obtained. Theoretically the colloidal particle
and the surface of the cell are described by a sphere and a
plane. In Refs. 44 and 45 the Derjaguin approximation had
been used to obtain a prediction for this geometry starting
from the theoretical results for the universal finite-size scal-
ing functions �++�x� and �+−�x� for the film geometry. The
authors of Refs. 44 and 45 have fitted their data with the
equivalent of ansatz �Eq. �31��, taking �0 as free parameter.
Their result for �0 is consistent with that obtained from the
analysis of bulk quantities. This check could be made more
stringent by replacing the theoretical estimate of C2 of Refs.
44 and 45 by ours Eq. �58�.

Finally in Table III we have summarized results obtained
for the scaling functions at the bulk critical point. In the
literature, results obtained by field theoretic methods,31 the
de Gennes-Fisher local-functional method,39 Monte Carlo
simulations,16,17,31 and experiment40 can be found. Mostly, in
the original work, the so-called Casimir amplitude �
=��0� /2 is quoted. We see that field theoretic methods, in
particular, the � expansion, are not able to provide quantita-
tively satisfying results. Those of the de Gennes-Fisher local-
functional method39 are in much better agreement with ours.
The results of previous Monte Carlo simulations differ by
more than the quoted error bars from our results. Note that in
Ref. 16 only the statistical error is quoted. The numbers
quoted for Ref. 17 are obtained by using an ansatz different
from that of Ref. 16, which explains the difference between

them. In Fig. 8 of Ref. 17 the authors give in addition to the
results obtained with their preferred ansatz those obtained by
using two alternative ansätze. From this comparison one
might conclude that the systematical error is larger than the
statistical one that we quote in Table III.

As we have seen here, for the thicknesses that can be
studied today, corrections to scaling, in particular, those
caused by the boundaries, are numerically important. In or-
der to get an accurate result for the scaling limit, these cor-
rections have to be properly taken into account. In the ge-
neric case, when corrections �L0

−�, with �=0.832�6�, and
�L0

−1 are present this is a difficult task.

IX. SUMMARY AND CONCLUSIONS

We have studied the thermodynamic Casimir force for
thin films in the three-dimensional Ising universality class. In
particular, we have studied symmetry-breaking boundary
conditions. We consider the two cases ++ and +−, where the
fixed spins at the boundary are either all positive or are posi-
tive at one boundary and negative at the other. We have
simulated the improved Blume-Capel model on the simple
cubic lattice. The boundary conditions are expected to cause
corrections that are to leading order �L0

−1. In general it is
hard to disentangle such corrections from leading corrections
to finite-size scaling which are �L0

−� where �=0.832�6�
�Ref. 12�. In the improved model, corrections to scaling
�L0

−� are eliminated. This fact very much simplifies the
analysis of the Monte Carlo data. In particular, we could
clearly demonstrate that the corrections caused by the bound-
aries can be expressed by an effective thickness L0,ef f =L0
+Ls. For our model we find, for both ++ and +− boundary
conditions Ls=1.9�1�.

Having corrections to scaling well under control, we have
obtained reliable results for the universal finite-size scaling
functions �++�x� and �+−�x�, where x= t�L0,ef f /�0�1/�, of the
thermodynamic Casimir force. For large values of x, we have
compared our estimates for �++�x� and �+−�x� with the pre-
diction �Eq. �31�� derived by using the transfer-matrix for-
malism. We find good agreement. For large values of −x we
have compared �++�x� with Eq. �33� also derived by using
the transfer-matrix formalism. Also here we find agreement.

Finally we have compared our estimates for �++�x� and
�+−�x� with field theoretic calculations, the de Gennes-Fisher
local-field method, previous Monte Carlo simulations and
experiments. While field theory does not provide quantita-
tively satisfying results, those of the local-field method are in
quite reasonable agreement with ours. Also the results of
previous Monte Carlo simulations are essentially in agree-
ment with ours.
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TABLE III. Comparison of our results for �++�0� and �+−�0�
with those given in the literature. For a discussion see the text.

Reference Method �++�0� �+−�0�

31 � expansion −0.346 3.16

31 d=3 expansion −0.652 4.78

39 Local functional −0.84�16� 6.2

40 Experiment 6�2�
31 Monte Carlo −0.690�32� 4.900�64�
16 Monte Carlo −0.884�16� 5.97�2�
17 Monte Carlo −0.75�6� 5.42�4�
Here Monte Carlo −0.820�15� 5.613�20�
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